Abstract

In its soluble ionic forms, lead (Pb) is a toxic element occurring in waters and soils mainly as the result of human activities. The bioavailability of lead ions can be decreased by complexation with various materials in order to decrease their toxicity. Pb chemical immobilization using phosphate addition is a widely accepted technique to immobilize Pb from aqueous solution and contaminated soils. The application of different P amendments cause Pb in soils to shift from forms with high availability to the most strongly bound Pb fractions. The increase of Pb in the residual or insoluble fraction results from formation of pyromorphite Pb5(PO4)3X where X = F, Cl, Br, OH, the most stable environmental Pb compounds under a wide range of pH and Eh natural conditions. Accidental pyromorphite ingestion does not yield bioavailable lead, because pyromorphite is insoluble in the intestinal tract. Numerous natural and synthetic phosphates materials have been used to immobilize Pb: apatite and hydroxyapatite, biological apatite, rock phosphate, soluble phosphate fertilizers such as monoammonium phosphate, diammonium phosphate, phosphoric acid, biosolids rich in P, phosphatic clay and mixtures. The identification of pyromorphite in phosphate amended soils has been carried out by different non destructive techniques such as X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray absorption fine structure, transmission electron microscopy and electron microprobe analysis. The effectiveness of in situ Pb immobilization has also been evaluated by selective sequential extraction, by the toxicity leaching procedure and by a physiologically based extraction procedure simulating metal ingestion and gastrointestinal bioavailability to humans. Efficient Pb immobilization using P amendments requires increasing the solubility of the phosphate phase and of the Pb species phase by inducing acid conditions. Although phosphorus addition seems to be highly effective, excess P in soil and its potential effect on eutrophication of surface water, and the possibility of As enhanced leaching remains a concern. The use of mixed treatments may be a useful strategy to improve their effectiveness in reducing lead phyto- and bioavailability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.