Abstract
Oncogenic osteomalacia (OOM) is characterized by renal phosphate wasting and abnormal metabolism of vitamin D, somewhat similar to the phenotype of X-linked hypophosphatemic rickets (HYP). DNA from OOM tumor cells was analyzed for mutations in the PHEX gene, which is mutated in HYP. Screening for mutations by single-strand conformation polymorphism analysis and subsequent sequencing of all the exons revealed no mutations. Conditioned media from long-term cultures of OOM tumor cells were used to further characterize the physical properties of the phosphate-regulating factor and its mechanism of action. Inhibition of OK 3B2 cell renal phosphate transport by conditioned media was dose-dependent and maximal after 20 h. This time course differed from that of parathyroid hormone (PTH). The bioactivity was stable to mild acid and alkali treatment and freeze drying and was retained in the aqueous phase following organic solvent extraction. The activity was not suppressed by heat or by treatment with trypsin but was suppressed by the protease papain and had an apparent molecular weight of <5000. No change was detected in the expression of type II sodium/phosphate cotransporter (NaPi) mRNA in OK 3B2 cells in response to conditioned media, unlike the reduction seen in Hyp mice. In the presence of colchicine or cytochalasin D, the inhibitory response to conditioned media was reduced, similar to the effect of these agents on the response to PTH. Cycloheximide also suppressed the inhibitory response of conditioned media, but not the response to PTH. These studies indicate that mutations in the PHEX gene are unlikely to be responsible for OOM and suggest that the tumor-derived factor that inhibits phosphate uptake is a small protein that does not downregulate type II NaPi mRNA, and requires an intact cytoskeleton and protein synthesis for activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.