Abstract

In this study we used a newly isolated Yarrowia lipolytica strain with a unique capacity to grow over a wide pH range (3.5-10.5), which makes it an excellent model system for studying phosphate transport systems in cells grown under alkaline conditions. Phosphate uptake by Y. lipolytica yeast cells grown at pH 9.5-10 was shown to be mediated by several kinetically discrete Na+-dependent systems. One of these, a low-affinity transporter, operates at high Pi concentrations and is, to our knowledge, here kinetically characterized for the first time. The other two high-affinity systems are derepressible, come into play under conditions of Pi-starvation, and appear to be controlled by the availability of extracellular Pi. They represent the first examples of high-capacity, Na+-driven Pi transport systems in an organism belonging to neither the animal nor the bacterial kingdoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.