Abstract

Phosphate (Pi) is a macronutrient, and Pi homeostasis is essential for life. Pi homeostasis has been intensively studied; however, many questions remain, even at the cellular level. Using Schizosaccharomyces pombe, we sought to better understand cellular Pi homeostasis and showed that three Pi regulators with SPX domains, Xpr1/Spx2, Pqr1, and the VTC complex synergistically contribute to Pi homeostasis to support cell proliferation and survival. SPX domains bind to inositol pyrophosphate and modulate activities of Pi-related proteins. Xpr1 is a plasma membrane protein and its Pi-exporting activity has been demonstrated in metazoan orthologs, but not in fungi. We first found that S. pombe Xpr1 is a Pi exporter, activity of which is regulated and accelerated in mutants of Pqr1 and the VTC complex. Pqr1 is the ubiquitin ligase down-regulating the Pi importers, Pho84 and Pho842. The VTC complex synthesizes polyphosphate (polyP) in vacuoles. Triple deletion of Xpr1, Pqr1, and Vtc4, the catalytic core of the VTC complex, was nearly lethal in normal medium, but survivable at lower [Pi]. All double-deletion mutants of the three genes were viable at normal Pi, but Δpqr1Δxpr1 showed severe viability loss at high [Pi], accompanied by hyper-elevation of cellular total Pi and free Pi. This study suggests that the three cellular processes, restriction of Pi uptake, Pi export, and polyP synthesis, contribute synergistically to cell proliferation through maintenance of Pi homeostasis, leading to the hypothesis that cooperation between Pqr1, Xpr1, and the VTC complex protects the cytoplasm and/or the nucleus from lethal elevation of free Pi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call