Abstract
Renal adaptation to changes in phosphate intake was studied by comparing phosphate uptake by proximal tubule brush border membrane vesicles from rabbits on a relatively high or low phosphorus diet. The low phosphorus diet increased Na+ gradient-dependent phosphate uptake. Uptake in the absence of Na+ and in the presence of Na+, but no gradient, was not significantly affected. The phosphorus diet did not alter Na+ gradient-dependent D-glucose and L-proline uptake. The low phosphorus diet increased Vmax; affinity for phosphate was not appreciably changed. At all concentrations of extravesicular Na+, phosphate uptake was higher in membrane vesicles from animals fed the low phosphorus diet; the kinetics of the phosphate uptake system, with respect to Na+, was also altered by the change in dietary phosphate. These findings suggest that adaptation involves an alteration in the rate of translocation of the Na+-phosphate carrier when energized by a Na+ gradient driving force rather than a change in the number of Na+-phosphate carrier sites. With membrane vesicles from rabbits fed a low phosphorus diet, phosphate uptake increased several-fold when the pH of the uptake medium was raised, whereas with membrane vesicles from animals fed a high phosphorus diet the enhancement of uptake with alkalinization was relatively small. Irrespective of the diet, divalent phosphate was the probable preferred species for transport. Dietary adaptation was associated, however, with an alteration in the pH dependency of the transport system per se. These findings provide evidence that the adaptation of the kidney phosphate transport system to dietary phosphate load involves an intrinsic change in the Na+-phosphate carrier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.