Abstract

Escherichia coli strain AN710 possesses only the PIT system for phosphate transport. Membrane vesicles from this strain, which contain phosphate internally, perform exchange and active transport of phosphate. The energy for active transport is supplied by the respiratory chain with ascorbate-phenazine methosulphate as electron donor. To a lesser extent also the oxidation of d-lactate energizes phosphate transport; the oxidation of succinate is only marginally effective. Phosphate transport is driven by the proton-motive force and in particular by the pH gradient across the membrane. This view is supported by the observation that phosphate transport is stimulated by valinomycin, inhibited by nigericin and abolished by the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Neither inhibitor affects phosphate exchange. The phosphate analogue arsenate inhibits both the exchange reaction and active transport. Both processes are stimulated by K + and Mg 2+, the highest activities being observed with both ions present. Membrane vesicles have also been isolated from Escherichia coli K10, a strain which possesses only a functional PST phosphate transport system. These vesicles perform neither exchange nor active transport of phosphate, although active transport of amino acids is observed in the presence of ascorbate-phenazine methosulphate or d-lactate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.