Abstract
The electrochemical reforming of ethanol to H2 is achieved at 150 °C in an autoclave electrochemical cell that allows the safe pressurization of the H2 produced as no O2 is evolved. The alkaline conditions are very aggressive to catalysts including noble metals like Pt and Pd. We report a highly active ethanol oxidation catalyst (PdCoNifoam) composed of Pd nanoparticles supported on nanostructured Co oxide structures grown on nickel foam. Treatment with phosphorous vapors at high temperature yields a thin coating of phosphate that confers enhanced stability to the electrode operating in an electrolysis cell at 150 °C. A combination of scanning electron microscopy (energy dispersive X-ray spectroscopy) and X-ray photoelectron spectroscopy reveal a 3D nano-flake surface with an external layer of phosphates that prevents Pd dissolution. The PdCoP@Nifoam catalyst was successfully used for ethanol electrochemical reforming at 150 °C with self-pressurization of the H2 produced by the electrochemical reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.