Abstract

Available information on the microbial mechanisms associated with heavy metal (HM) passivation during co-composting amended with phosphate rock (PR) remains limited. Thus, this study investigated the dynamic changes in bacterial communities and HM-fractions (Zn, Cu, Cd, Cr and Pb) during swine manure composting with maize straw, and ascertained the bacterial influence on HM-passivation. The results demonstrated that the addition of PR improved HM-passivation, especially for Zn and Cd, with their bioavailability factors (BFs) reduced by 247.41 and 176.25%, respectively. As for bacterial communities, the proportion of Firmicutes decreased, while the proportions of Proteobacteria, Bacteroidetes, Deinococcus-Thermus and Gemmatimonadetes increased in all treatments. PR significantly changed the primary bacterial phyla in the thermophilic phase. Bacteroidetes were the main bacterial component controlling the passivation of Zn, Cu and Cr, while Deinococcus-Thermus mainly regulated the mobility of Zn and Pb, and Proteobacteria only dominated the transformation among Cd-fractions. These results may provide a reference for the use of HM-passivation techniques during composting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.