Abstract

We studied the dolomite modified using an ultrasound bath and its application in phosphate removal. The modification was applied to improve the physicochemical properties of the dolomite and then to enhance its suitability as an adsorbent solid. The settings for analyzing the adsorbent modification were bath temperature and sonication time. The modified dolomite was characterized by electron microscopy, N2 adsorption/desorption, pore size, and X-ray diffraction. To grasp the pollutant’s adsorption mechanism more precisely, we used experimental research and mathematical model analysis. Design of Experiments was conducted to determine the ideal circumstances. In addition, the Bayesian method of Markov Chain Monte Carlo was used to estimate the isotherm and kinetic model parameters. A thermodynamic study was done to investigate the adsorption mechanism. Results show that the surface area of the modified dolomite was greater, enhancing its adsorption properties. To remove more than 90% of the phosphate, the optimal operational parameters for the adsorption were pH 9, 1.77 g of adsorbent mass, and 55 minutes of contact time. The pseudo-first-order, Redlich–Peterson and Sips models presented a good fit to the experimental data. Thermodynamics suggested a spontaneous and endothermic process. The mechanism suggested that physisorption and chemisorption could be involved in phosphate removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call