Abstract

Phosphate (P) removal is significant for water pollution control. In this paper, a novel penicillin biochar modified with zirconium (ZMBC) was synthesized and used to adsorb P in water. The results showed that ZMBC had a porous structure and magnetic properties, and the zirconium (Zr) was mainly present in the form of an amorphous oxide. P adsorption displayed strong pH dependence. The Freundlich model described the adsorption process well, and the saturated adsorption capacity was 27.97mg/g (25 ℃, pH = 7). The adsorption kinetics were consistent with the pseudo-second-order model, and the adsorption rates were jointly controlled by the surface adsorption stage and intraparticle diffusion stage. Coexisting anion experiments showed that CO32- inhibited P adsorption, reducing the adsorption capacity by 62.63%. The adsorbed P was easily desorbed by washing with a 1M NaOH solution, and after 5 cycles, the adsorbent had almost the same capacity. The mechanism for P adsorption was inner-sphere complexation and electrostatic adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call