Abstract

BackgroundMicrobial lipids derived from various lignocellulosic feedstocks have emerged as a promising candidate for the biodiesel industry and a potential substitute for high value-added fats. However, lignocellulosic biomass, especially herbaceous biomass, such as water hyacinth, contains high concentrations of nitrogenous components. These compounds impede microbial lipid production, as lipid biosynthesis is commonly induced by imposing a nutrient deficiency, especially nitrogen starvation. Novel strategies and bioprocesses are pivotal for promoting lipid production from nitrogen-rich biomass.ResultsHere a combined strategy of phosphate removal and acetate supplementation was described for enhanced microbial lipid production on water hyacinth hydrolysates by Cutaneotrichosporon oleaginosum (formerly Cryptococcus curvatus). Lipid production was significantly improved, when the phosphorus limitation and sugars/acetate co-utilization strategies were used separately. In this case, acetate and glucose were consumed simultaneously. Lipid production was observed by the combination of phosphate removal with acetate supplementation. Lipid titer, content, and yield were determined to be 7.3 g/L, 59.7% and 10.1 g/100 g raw water hyacinth, respectively. These data were increased by 4.2, 4.6, and 4.3 times, respectively, compared to those from the unprocessed hydrolysates. The fatty acid compositions of the resulting lipids bear a marked resemblance to those of rapeseed oil, indicating their applicability to the biodiesel industry.ConclusionsThe combination of phosphate removal and acetate supplementation was successful in significantly enhancing microbial lipid production. This strategy offers a valuable solution for nitrogen-rich lignocellulosic feedstocks utilization, which should foster more economical nitrogen-rich biomass-to-lipid bioprocesses.

Highlights

  • Water hyacinth (Eichhornia crassipes) is a widespread aquatic weed in sub-tropical and tropical regions

  • This strain was maintained at 4 °C and propagated twice a month at 30 °C on slants of yeast peptone dextrose (YPD) agar according to a published formula [11]

  • Glucose and Total reducing sugars (TRS) were as low as 12.3 g/L and 22.6 g/L, respectively, when 0.5% sulfuric acid was used

Read more

Summary

Introduction

Water hyacinth (Eichhornia crassipes) is a widespread aquatic weed in sub-tropical and tropical regions. It has been regarded as a serious threat to the biological diversity and ecological equilibrium in recent years because of its extraordinary adaptability and fast growth rate [1, 2]. Water hyacinth has been investigated for bioethanol and biogas production [5,6,7,8]. Lignocellulosic biomass, especially herbaceous biomass, such as water hyacinth, contains high concentrations of nitrogenous components. These compounds impede microbial lipid production, as lipid biosynthesis is commonly induced by imposing a nutrient deficiency, especially nitrogen starvation. Novel strategies and bioprocesses are pivotal for promoting lipid production from nitrogen-rich biomass

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call