Abstract

Cationic hydrogels have received great attention to control eutrophication and recycle phosphate. In this study, a type of La(OH)3 loaded magnetic MAPTAC-based cationic hydrogel (La(OH)3@MMCH) was developed as a potential adsorbent for enhanced phosphate removal from aqueous environment. La(OH)3@MMCH exhibited high adsorption capacity of 105.72±5.99 mg P/g, and reached equilibrium within 2 hr. La(OH)3@MMCH could perform effectively in a wide pH range from 3.0 to 9.0 and in the presence of coexisting ions (including SO42−, Cl−, NO3−, HCO3−, SiO44− and HA). The adsorption-desorption experiment indicated that La(OH)3@MMCH could be easily regenerated by using NaOH-NaCl as the desorption agent, and 73.3% adsorption capacity remained after five cycles. Moreover, La(OH)3@MMCH was employed to treat surface water with phosphate concentration of 1.90 mg/L and showed great removal efficiency of 95.21%. Actually, MMCH showed high surface charge density of 34.38-59.38 meq/kg in the pH range from 3.0 to 11.0 and great swelling ratio of 3014.57% within 24 h, indicating that MMCH could produce the enhanced Donnan membrane effect to pre-permeate phosphate. Furthermore, the bifunctional structure of La(OH)3@MMCH enabled it to capture phosphate through electrostatic attraction and ligand exchange. All the results prove that La(OH)3@MMCH is a promising adsorbent for eutrophication control and phosphate recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.