Abstract

Selective and stable production of C2 oxygenates from syngas is enabled by a phosphate-passivated mordenite catalyst used in tandem with a commercial Cu/ZnO/AlMgOx catalyst. Unmodified mordenite used in this arrangement is accompanied by substantial hydrocarbon formation and carbon deposition. Therefore, phosphate groups are used to remove or significantly reduce Brønsted acidity in mordenite by capping aluminum sites. Such groups are stable to calcination and catalyst regeneration. Trimethylphosphite is used as a phosphate precursor because it is able to enter the 12 membered-ring pores of mordenite where hydrocarbon formation occurs, but not enter the 8 membered-ring side-pockets, where methanol carbonylation occurs selectively. The catalyst was characterized using X-ray fluorescence, X-ray diffraction, and thermal gravimetric analysis. Optionally, a third bed of Cu/ZnO/AlMgOx catalyst is able to hydrodeoxygenate acetic acid to ethanol. The C2 oxygenate selectivity is over 96% and among the best reported in a single reactor with a syngas feed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.