Abstract

An Aquivion/titanium zirconium oxide nanofibrous web composite membrane was prepared and tested as a proton exchange membrane in a hydrogen/air fuel cell. The incorporation of a small dose (9 wt % membrane) of a uniformly distributed electrospun titanium zirconium oxide (TiO2/ZrO2; Ti/Zr = 1:1 atomic ratio) nanofibrous web significantly improved hydromechanical stability of the composite membranes, which exhibited approximately 2 times higher water retention and 30 times lower dimensional change than a pristine Aquivion membrane under in-water membrane hydration conditions. Phosphate functionalities were successfully added onto the nanofiber surface, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The added phosphate functionality resulted in higher proton conductivity of the prepared composite membrane compared to the non-modified TiO2/ZrO2 nanofibrous web composite membrane [e.g., 0.027 S cm–1 versus 0.021 S cm–1 at 120 °C and 40% relative humidity (RH)]. A single cell test also showed ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.