Abstract

Spinel iron cobaltite (FeCo2O4) with high theoretical capacity is a promising positive electrode material for building high-performance supercapacitors. However, its inherent poor conductivity and deficient electrochemical active sites hinder the improvement of its electrochemical kinetics behavior. Herein, phosphate ions modified FeCo2O4 is obtained in the presence of oxygen vacancies (P-FeCo2O4-x) by a simple metal organic framework gel-derived strategy. Phosphate ions added on the surface of P-FeCo2O4-x greatly enhances its surface activity, thus prompting the faster charge storage kinetics of the electrode material. Due to its ample electrochemical active sites and rapid ion diffusion and electron mobility, the optimized P-FeCo2O4-x electrode delivers a superior specific capacity of 1568.8 F g−1 (784.4 C g−1) at a current density of 1 A/g and has an excellent cycling stability with 93.3 % initial capacity retention ratio after 5000 cycles. More impressively, the assembled asymmetric supercapacitor consisting of P-FeCo2O4-x and activated carbon which act as positive and negative electrode materials, respectively displays a favorable energy density of 60.2 Wh kg−1 at a power density of 800 W kg−1 and has a long cycling lifespan. These results demonstrate the potential importance of modifying the surface of spinel cobaltite with phosphate ions and incorporating oxygen defects in it as a facile strategy for enhancing the electrochemical kinetics of electrode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.