Abstract

Advancements in antibiotic drug design are often hindered by missing information on how these small molecules interact with living cells. The antibiotic, daptomycin, has found clinical success and an emerging resistance, but a comprehensive picture of its mechanism of action has remained elusive. Using a surface-specific spectroscopy technique, second harmonic generation, we are able to quantitatively assess the binding of daptomycin to living cell membranes without the addition of exogenous labels. Our results reveal similar binding affinities for both Gram-positive and Gram-negative bacteria studied, including Escherichia coli. More importantly, we show that the presence of phosphate ions influences the binding of daptomycin to the Gram-positive bacterium Enterococcus faecalis. The role of environmental phosphate has not previously been considered in any proposed mechanism, and its implications are expected to be important in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.