Abstract

The kinetics of the arsenate-induced desorption of phosphate from goethite has been studied with a batch reactor system and ATR-FTIR spectroscopy. The effects of arsenate concentration, adsorbed phosphate, pH and temperature between 10 and 45 °C were investigated. Arsenate is able to promote phosphate desorption because both oxoanions compete for the same surface sites of goethite. The desorption occurs in two steps: a fast step that takes place in less than 5 min and a slow step that lasts several hours. In the slow step, arsenate ions exchange adsorbed phosphate ions in a 1:1 stoichiometry. The reaction is first order with respect to arsenate concentration and is independent of adsorbed phosphate under the experimental conditions of this work. The rate law is then r = k r [ As], where r is the desorption rate, k r is the rate constant and [ As] is the arsenate concentration in solution. The values of k r at pH 7 are 1.87 × 10 −5 L m −2 min −1 at 25 °C and 7.95 × 10 −5 L m −2 min −1 at 45 °C. The apparent activation energy of the desorption process is 51 kJ mol −1. Data suggest that the rate-controlling process is intraparticle diffusion of As species, probably As diffusion in pores. ATR-FTIR spectroscopy suggests that adsorbed phosphate species at pH 7 are mainly bidentate inner-sphere surface complexes. The identity of these complexes does not change during desorption, and there is no evidence for the formation of intermediate species during the reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.