Abstract

Potassium-induced insulin secretion is impaired in rats with chronic renal failure and a sustained rise in cytosolic calcium ([Ca2+]i). It has been found that the calcium signal (delta[Ca2+]i) and the delta [Ca2+]i/basal [Ca2+]i in these animals in response to potassium are smaller than those in normal rats and that these defects may underlie, at least in part, the reduced potassium-induced insulin secretion, since the latter depends on an appropriate rise in [Ca2+]i. Since phosphate depletion (PD) is another model associated with a rise in the basal level of [Ca2+]i of pancreatic islets, it provides another metabolic setting for investigating the interaction between high [Ca2+]i of islets and their response to potassium. We examined the potassium-induced insulin secretion, the potassium-induced calcium signal, and the delta [Ca2+]i/basal [Ca2+]i in islets of PD rats with and without elevated [Ca2+]i. The levels of the basal [Ca2+]i in the islets of PD rats were significantly (P less than 0.01) higher than those in pair-weighed (PW) animals and those in PD and PW rats treated with verapamil, which has been shown to prevent the rise in [Ca2+]i in islets of PD rats. Both initial and total insulin secretion, the calcium signal, and the delta [Ca2+]i/basal [Ca2+]i in the islets of PD rats were significantly (P less than 0.01) smaller than those in the other three groups of animals. There were no significant differences in basal levels of [Ca2+]i and in calcium signal, delta [Ca2+]i/basal [Ca2+]i, and insulin secretion among PW rats, verapamil-treated PD rats, and verapamil-treated PW rats. The results are consistent with the notion that elevated resting levels of [Ca2+]i interfere with the magnitude of the calcium signal and the ratio of calcium signal to basal [Ca2+]i, and these derangements, at least in part, underlie the impaired potassium-induced insulin secretion in PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.