Abstract

The formation of root hairs is a unique developmental process that requires the concerted action of a multitude of proteins. Root hair development is controlled by intrinsic programs, but fine-tuning of these programs occurs in response to environmental signals, dictating the shape and function of epidermal cells. In particular, low availability of soil-immobile mineral nutrients such as phosphate (Pi) affects the density and length of root hairs, resulting in an increased absorptive surface area. We recently reported on a time-course transcriptional profiling study aimed at identifying gene networks that signal Pi deficiency and mediate adaptation to Pi shortage. Using root-specific coexpression analysis of early Pi-responsive genes, we identified a subset of novel loci crucial for the development of root hairs under Pi-deficient conditions. Remodeling of cell wall structures may be associated with the TOR (Target of Rapamycin) pathway, a highly conserved central regulator of growth and development in eukaryotic cells that senses nutrient availability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.