Abstract

Recent development of paleo-nutrient proxies based on the phosphorus/calcium (P/Ca) ratio in tropical- and deep-water corals (also known as cold-water corals) require an understanding of the processes by which P is incorporated into the coral skeletal aragonite. Here, we apply single- and double-resonance solid-state nuclear magnetic resonance (NMR) spectroscopy to determine the speciation of P in coral aragonite. The results show that the majority of P occurs as phosphate defects in the aragonite structure, but in many samples a significant fraction of the P occurs also in crystalline hydroxylapatite inclusions. Quantification of the amount of hydroxylapatite indicates that its presence is not related simply to external environmental factors and that it can occur at varying abundances in different parts of the same corallite. Since there is currently no model available to describe the relationship between dissolved inorganic phosphate and its incorporation as apatite inclusions into carbonates, careful screening of samples which contain only phosphate in the aragonite structure or selective microsampling could improve proxy development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.