Abstract

The aim of this study was to develop phosphate decorated lipid-based nanocarriers including self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) to extend their mucosal residence time. All nanocarriers contained tetradecyltrimethylammonium bromide (TTAB) and polyoxyethylene (9) nonylphenol monophosphate ester (PNPP) for surface decoration. Zeta potential, cytotoxicity, charge conversion and phosphate release studies using isolated intestinal alkaline phosphatase (IAP) and Caco-2 cells were performed. Moreover, the residence time of nanocarriers was determined on porcine intestinal mucosa. Results showed a shift from negative to positive zeta potential due to the addition of TTAB and charge conversion back to a negative zeta potential when also PNPP was added. Up to a concentration of 0.3 %, lipid-based nanocarriers were not toxic. Charge conversion studies with IAP revealed the highest zeta potential shift for NLCTTAB-PNPP with almost Δ22 mV. Phosphate release studies using isolated IAP as well as Caco-2 cells showed a fast phosphate release for SEDDSTTAB-PNPP, SLNTTAB-PNPP and NLCTTAB-PNPP. SLN TTAB-PNPP and NLC TTAB-PNPP provided the highest increase in mucosal residence time that was 4-fold more prolonged than that of blank formulations. In conclusion, phosphate modified lipid-based nanocarriers can essentially prolong the intestinal residence time of their payload.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.