Abstract
An obvious challenge for rechargeable Zn-air batteries (ZABs) is the impact of large charge potentials on the oxidation of their cathode catalysts, which accelerates the corrosion of the carbon electrodes, and significantly compromises their stability. It is therefore necessary to design simple methods aimed at facilitating the oxygen evolution reaction (OER) processes of ZABs to suppress the corrosion of their cathode materials. Herein, a biomass-derived N-doped porous carbon material coupled with Fe3O4 and Fe2N nanoparticles and modified with phosphorus (P-Fe3O4/Fe2N@NPC) was designed as an air-cathode to reduce the charging voltage of ZABs. It exhibited excellent ORR/OER bifunctional electrocatalytic activities, and the assembled ZAB displayed an ultra-long service life. DFT calculations showed that the P-modification modulated the electronic state and coordination environment of the active iron atom, thereby significantly enhancing the OER activity of P-Fe3O4/Fe2N@NPC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.