Abstract

We investigated the interactions of dissolved reactive phosphorus (DRP) and dissolved nonreactive phosphorus (DNRP) with suspended and settled aquatic particles. The sorption to minerogenic particles from an alpine catchment collected in rivers, hydropower reservoirs, and a downstream ultraoligotrophic lake was modeled using Langmuir‐type isotherms. DRP and DNRP exhibited about equal affinities to particle surfaces. The sorption of dissolved species to surfaces alters the fate of P in water bodies. In spite of the small surface‐binding constants, high particle concentrations enhance the sorption of P to surfaces, and, consequently, chemical analysis of DRP can substantially underestimate the potentially bioavailable P. In unpolluted rivers with high content of suspended mineral particles, e.g., triggered by heavy rain events (2 μg DRP/L, 1.3 g/L suspended particles), P loads solely based on DRP measurements underestimate the true load of potentially bioavailable P by more than a factor of two. Modeling P sorption equilibria with a single type of surface site generates a management tool for water quality in P‐limited oligotrophic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.