Abstract
A new class of phosphinine/rhodium catalysts for the hydroformylation of terminal and internal alkenes is presented in this study. A series of phosphabenzenes 1-14 has been prepared by condensation of phosphane or tris(trimethylsilyl)phosphane with the corresponding pyrylium salt. Trans-[(phosphabenzene)2RhCl(CO)] complexes 21-25 have been prepared and studied spectroscopically and by X-ray crystal-structure analysis. The hydroformylation of oct-1-ene has been used to identify optimal catalyst preformation and reaction conditions. Hydroformylation studies with 15 monophosphabenzenes have been performed. The catalytic performance is dominated by steric influences, with the phosphabenzene 8/rhodium system being the most active catalyst. Turnover frequencies of up to 45370 h(-1) for the hydroformylation of oct-1-ene have been determined. In further studies, hydroformylation activity toward more highly substituted alkenes was investigated and compared with the standard industrial triphenylphosphane/rhodium catalyst. The reactivity differences between the phosphabenzene and the triphenylphosphane catalyst increase on going to the more highly substituted alkenes. Even tetrasubstituted alkenes reacted with the phosphabenzene catalyst, whereas the triphenylphosphane system failed to give any product. In situ pressure NMR experiments have been performed to identify the resting state of the catalyst. A monophosphabenzene complex [(phosphinine 8)Ir(CO)3H] could be detected as the predominant catalyst resting state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.