Abstract

Evidence for the presence of phospholipase D activity in sciatic nerve was obtained by incubation of 32P-prelabeled nerve segments in the presence of ethanol and measurement of [32P]phosphatidylethanol (PEth) formation expressed as a fraction of total phospholipid radioactivity. PEth synthesis was enhanced with increasing concentrations of ethanol (100 mM-2 M). 4-beta-Phorbol dibutyrate (100 nM-1 microM) stimulated PEth formation up to twofold in a time- and dose-dependent manner. The stimulatory effect evoked by 100 nM phorbol ester was completely abolished by Ro 31-8220 (compound 3), a selective protein kinase C inhibitor. Efforts to identify the phospholipid precursor of PEth were unsuccessful, suggesting this product arises from a small discrete precursor pool. On subcellular fractionation of nerve, the ratio of basal and 4-beta-phorbol dibutyrate-stimulated phospholipase D activity recovered in a myelin-enriched fraction, compared with a nonmyelin fraction, was 0.5 when results are expressed as a percentage of total phospholipid radioactivity. This ratio rises to 1.2 if the results are calculated assuming only phosphatidylcholine and phosphatidylethanolamine are potential precursors. The results suggest that myelin is a major locus of phospholipase D activity. Nerve from streptozotocin-induced diabetic and control animals displayed the same basal phospholipase D activity, but the enzyme in diabetic nerve was stimulated to a greater extent by a suboptimal concentration of 4-beta-phorbol dibutyrate. These results support the conclusion that protein kinase C modulates phospholipase D activity in nerve and suggest that in diabetic nerve the enzyme activation mechanism may possess increased sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call