Abstract

Incubation of turkey erythrocytes with the phorbol ester phorbol 12-myristate 13-acetate (PMA) results in a dose- and time-dependent desensitization of isoproterenol-stimulated adenylate cyclase activity. Compared to controls, membranes from PMA-treated cells have an isoproterenol-stimulated adenylate cyclase activity that is decreased 20%-40%, with little effect on forskolin or fluoride activation of adenylate cyclase. No change in beta-adrenergic receptor number is observed after PMA treatment, indicating that the major effect of PMA is to uncouple receptor interactions with Ns, the stimulatory guanine nucleotide regulatory protein of adenylate cyclase. Purification of beta-adrenergic receptors from 32Pi-labeled turkey erythrocytes, incubated in the presence or absence of PMA, indicates that the phorbol ester is capable of inducing a 3-fold increase in phosphorylation of the beta-adrenergic receptor. The PMA effect is similar to the phosphorylation of the beta-adrenergic receptor during isoproterenol- and dibutyryl cAMP-induced desensitization of adenylate cyclase in turkey erythrocytes. The findings indicate that decreased receptor-Ns coupling is correlated with receptor phosphorylation and that phorbol esters can influence the responsiveness of hormone-sensitive adenylate cyclase in certain cell types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.