Abstract

Marine sponges harbor a range of biologically active compounds. Phorbaketal A is a tricyclic sesterterpenoid isolated from the marine sponge Phorbas sp.; however, little is known about its biological activities and associated molecular mechanisms. In this study, we examined the anti-inflammatory effects and underlying molecular mechanism of phorbaketal A in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that phorbaketal A significantly inhibited the LPS-induced production of nitric oxide (NO), but not prostaglandin E2, in RAW 264.7 cells. Further, phorbaketal A suppressed the expression of inducible NO synthase at both the mRNA and protein levels. In addition, phorbaketal A reduced the LPS-induced production of inflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, and monocyte chemotactic protein-1. Treatment with phorbaketal A inhibited the transcriptional activity of nuclear factor-kappaB (NF-κB), a crucial signaling molecule in inflammation. Moreover, phorbaketal A up-regulated the expression of heme oxygenase-1 (HO-1) in LPS-stimulated RAW 264.7 cells. These data suggest that phorbaketal A, isolated from the marine sponge Phorbas sp., inhibits the production of inflammatory mediators via down-regulation of the NF-κB pathway and up-regulation of the HO-1 pathway.

Highlights

  • Inflammation is a crucial defense mechanism against pathogens and various external stimuli [1].Macrophages play an important role in inflammatory and other immune processes

  • We first evaluated the inhibitory effects of phorbaketal A (Figure 1A), isolated from the marine sponge Phorbas sp., on the production of two key inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), in macrophages

  • We investigated whether the inhibitory effects of phorbaketal A on NO production were associated with regulation of the expression of inducible NO synthase

Read more

Summary

Introduction

Inflammation is a crucial defense mechanism against pathogens and various external stimuli [1]. When macrophages are activated by external stimuli, they produce and secrete numerous endogenous inflammatory mediators, including prostaglandin E2 (PGE2), nitric oxide (NO), and pro-inflammatory cytokines [2]. These pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1beta (1β), IL-6, and monocyte chemotactic protein-1 (MCP-1), have pleiotropic effects on immune responses and acute-phase reactions [3]. In activated macrophages, HO-1 and its products have been shown to exert anti-inflammatory effects via attenuation of the expression of pro-inflammatory mediators such as NO, PGE2, TNF-α, IL-1β, IL-6, and MCP-1 [10,11,12,13]. In this study, we investigated the anti-inflammatory activities of phorbaketal A and its molecular mechanism in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages

Results and Discussion
Preparation of Phorbaketal A
Materials
Cell Culture and Sample
Cell Viability Assay
Determination of NO Production
Real-Time RT-PCR Analysis
Preparation of Nuclear Fractions
Western Blot Analysis
3.10. Transfection and Luciferase Assay
3.11. Detection of ROS Production
3.12. Statistical Analysis
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.