Abstract

The effects of two-tone stimuli on the high frequency bat-avoidance steering behavior of flying crickets (Teleogryllus oceanicus) were studied during tethered flight. Similarly, the effects of two-tone stimuli on the ultrasound sensitive auditory interneuron, Int-1, which elicits this behavior, were studied using intracellular staining and recording techniques. When a low frequency tone (3-8 kHz) was presented simultaneously with an aversive high frequency tone (in a two-tone stimulus paradigm), the high frequency avoidance steering behavior was suppressed. Suppression was optimal when the low frequency tone was between 4 and 5 kHz and about 10-15 dB louder than the high frequency tone (Figs. 2, 3). Best suppression occurred when the low frequency tone-pulse just preceded or overlapped the high frequency tone-pulse, indicating that the suppressive effects of 5 kHz could last for up to 70 ms (Fig. 4). The threshold for avoidance of the bat-like stimulus was elevated when model bat biosonar (30 kHz) was presented while the animal was performing positive phonotaxis toward 5 kHz model calling song, but only if the calling song intensity was relatively high (greater than 70-80 dB SPL) (Fig. 1). However, avoidance steering could always be elicited as long as the calling song was not more than 10 dB louder than the ultrasound (Fig. 1). This suppressive effect did not require performance of positive phonotaxis to the calling song (Fig. 2) and was probably due to the persistence of the suppressive effects of the 5 kHz model calling song (Fig. 4). The requirement for relatively high intensities of calling song suggest that the suppression of bat-avoidance by the calling song is not likely to be of great significance in nature. The high frequency harmonics of the male cricket's natural calling song overlap the lower frequency range used by insectivorous bats (10-20 kHz) and are loud enough to elicit avoidance behavior in a flying female as she closely approaches a singing male (Fig. 5). The high frequency 'harmonics' of a model calling song were aversive even if presented with a normally attractive temporal pattern (pulse repetition rate of 16 pps) (Fig. 6A). When the 5 kHz 'fundamental' was added to one of the high frequency 'harmonics', in a two-tone stimulus paradigm, this complex model calling song was attractive; the high frequency 'harmonic' no longer elicited the avoidance behavior (Fig. 6) and the animals steered toward the model CS. Thus, addition of 5 kHz to a high frequency harmonic of the calling song 'masked' the aversive nature of this stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call