Abstract
We present an analysis of the vibrational dynamics of metal vicinal surfaces using the embedded atom method to describe the interaction potential and both a real space Green's function method and a slab method to calculate the phonons. We report two main general characteristics: a global shift of the surface vibrational density of states resulting from a softening of the force field. The latter is a direct result of the reduction of coordination for the different type of surface atoms; and an appearance of high frequency modes above the bulk band, resulting from a stiffening of the force field near the step atom. The latter is due to a rearrangement of the atomic positions during the relaxation of the surface atoms yielding a large shortening of the nearest neighbor distances near the step atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.