Abstract
The critical temperature () of superconductivity in compounds is generally lower smaller with alkali atoms (A). Furthermore decreases with applied pressure. In the BCS model, these trends are explained by the lower density of states at the Fermi level for a decreased lattice constant (R). There is more than one counterexample, however, suggesting that BCS does not give the whole truth. The most important one is that the compound with the largest lattice constant, , is not superconducting at all at ambient pressure. In this paper we derive a novel model where a negative lattice contribution to HubbardU, proportional to1/R, is taken into account. It is possible to explain why compounds with A = Li, and Na have a low or are not superconducting at all, and why is superconducting only at applied pressure and then with the highest of all alkali fullerides. It is concluded that the density of states mechanism derived in the BCS model is in doubt. Nevertheless superconductivity in depends on electron-phonon coupling. The dominating phonon is the bond stretching phonon, a breathing phonon for the whole fullerene molecular ion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.