Abstract

Abstract This article presents inelastic thermal neutron scattering experiments probing the phonon dispersion in mesoporous silicon with pores 8 nm across. Scattering studies reveal the energy–momentum relation for transverse and longitudinal phonons along the high symmetry directions Γ L ¯ , Γ K ¯ and Γ X ¯ in the Brillouin zone. The dispersion up to phonon energies of 35 meV unambiguously proves that the phonon group velocities in highly-crystalline silicon are not modified by nanostructuring down to sub-10 nanometer length scales. On these length scales, there is apparently no effect of structuring on the elastic moduli of mesoporous silicon. No evidence can be found for phonon-softening in topologically complex, geometrically disordered mesoporous silicon putting it in contrast to silicon nanotubes and nanoribbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.