Abstract

While condensed matter systems host both fermionic and bosonic quasiparticles, reliably predicting and empirically verifying topological states is only mature for Fermionic electronic structures, leaving topological Bosonic excitations sporadically explored. This is unfortunate, as Bosonic systems such as phonons offer the opportunity to assess spinless band structures where nodal lines can be realized without invoking special additional symetries to protect against spin-orbit coupling. Here we combine first-principles calculations and meV-resolution inelastic x-ray scattering to demonstrate the first realization of parity-time reversal symmetry protected helical nodal lines in the phonon spectrum of MoB_{2}. This structure is unique to phononic systems as the spin-orbit coupling present in electronic systems tends to lift the degeneracy away from high-symmetry locations. Our study establishes a protocol to accurately identify topological Bosonic excitations, opening a new route to explore exotic topological states in crystalline materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call