Abstract
We theoretically study the phonon-drag contribution to the thermoelectric power and the hot-electron energy-loss rate in a Rashba spin–orbit coupled two-dimensional electron system in the Bloch–Gruneisen (BG) regime. We assume that electrons interact with longitudinal acoustic phonons through a deformation potential and with both longitudinal and transverse acoustic phonons through a piezoelectric potential. The effect of the Rashba spin–orbit interaction on the magnitude and temperature dependence of the phonon-drag thermoelectric power and hot-electron energy-loss rate is discussed. We numerically extract the exponent of temperature dependence of the phonon-drag thermopower and the energy-loss rate. We find that the exponents are suppressed due to the presence of the Rashba spin–orbit coupling.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.