Abstract

The phonon-assisted interband optical absorption spectrum of silicon is calculated at the quasiparticle level entirely from first principles. We make use of the Wannier interpolation formalism to determine the quasiparticle energies, as well as the optical transition and electron-phonon coupling matrix elements, on fine grids in the Brillouin zone. The calculated spectrum near the onset of indirect absorption is in very good agreement with experimental measurements for a range of temperatures. Moreover, our method can accurately determine the optical absorption spectrum of silicon in the visible range, an important process for optoelectronic and photovoltaic applications that cannot be addressed with simple models. The computational formalism is quite general and can be used to understand the phonon-assisted absorption processes in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.