Abstract
Following recent molecular dynamic simulations [M. Dinpajooh and A. Nitzan, J. Chem. Phys. 153, 164903 (2020)], we theoretically analyze how the phonon heat transport along a single polymer chain may be affected by varying the chain configuration. We suggest that phonon scattering controls the phonon heat conduction in strongly compressed (and tangled) chain when multiple random bends act as scattering centers for vibrational phonon modes, which results in the diffusive character of heat transport. As the chain is straightening up, the number of scatterers decreases, and the heat transport acquires nearly ballistic character. To analyze these effects, we introduce a model of a long atomic chain made out of identical atoms where some atoms are put in contact with scatterers and treat the phonon heat transfer through such a system as a multichannel scattering problem. We simulate the changes in the chain configurations by varying the number of the scatterers and mimic a gradual straightening of the chain by a gradual reducing of the number of scatterers attached to the chain atoms. It is demonstrated, in agreement with recently published simulation results, that the phonon thermal conductance shows a threshold-like transition from the limit where nearly all atoms are attached to the scatterers to the opposite limit where the scatterers vanish, which corresponds to a transition from the diffusive to the ballistic phonon transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.