Abstract

Silicon carbide (SiC) is a wide band gap semiconductor with a variety of industrial applications. Among its many useful properties is its high thermal conductivity, which makes it advantageous for thermal management applications. In this paper we present ab initio calculations of the in-plane and cross-plane thermal conductivities, κin and κout, of three common hexagonal polytypes of SiC: 2H, 4H and 6H. The phonon Boltzmann transport equation is solved iteratively using as input interatomic force constants determined from density functional theory. Both κin and κout decrease with increasing n in nH SiC because of additional low-lying optic phonon branches. These optic branches are characterized by low phonon group velocities, and they increase the phase space for phonon-phonon scattering of acoustic modes. Also, for all n, κin is found to be larger than κout in the temperature range considered. At electron concentrations present in experimental samples, scattering of phonons by electrons is shown to be negligible except well below room temperature where it can lead to a significant reduction of the lattice thermal conductivity. This work highlights the power of ab initio approaches in giving quantitative, predictive descriptions of thermal transport in materials. It helps explain the qualitative disagreement that exists among different sets of measured thermal conductivity data and provides information of the relative quality of samples from which measured data was obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call