Abstract

The study of graphene thermal conductivity is of great importance, as its anomalous thermal and electrical conductivities (the largest among the all known materials so far) provide very good perspectives for graphene-based nanoelectronics devices. Thermal conductivity of graphene is phonon-based, since its electronic-based thermal conductivity represents less than 1% of the total thermal conductivity at room temperature. For the consideration of the thermal conductivity of graphene the Boltzmann equation in the approximation of relaxation time is used. The relaxation time is determined, with three mechanisms of phonon scattering accounted simultaneously: at defects, at borders, and on phonons. Temperature dependence of thermal conductivity is determined numerically in the range from 15 K to 400 K. The results obtained are in accordance with some other available results found in literature, obtained either experimentally or by numerical calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call