Abstract

A theory is presented of the damping and frequency shift of phonons and of the ground-state energy corrections due to interactions between phonons in quantum crystals with singular forces. The technique begins with the adoption of a trial ground-state wave function of the Jastrow form, together with trial excited-state wave functions constructed to represent one-, two-, and three-phonon excitations. The Hamiltonian matrix in this restricted basis is diagonalized, and the basis is optimized by minimizing the lowest eigenvalue with respect to variational phonon parameters. Using a lowest-order cluster expansion, the unambiguous prescription is obtained that a specific effective potential, softened by the Jastrow correlation function, replaces everywhere the true potential in the existing self-consistent theory of phonon damping applicable to nonsingular forces. Close analogies are drawn with the correlated basis function treatment, of superfluid liquid helium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.