Abstract

Phonon spectra of a two-dimensional (2D) solid dusty plasma modulated by 2D square and triangular periodic substrates are investigated using Langevin dynamical simulations. The commensurability ratio, i.e., the ratio of the number of particles to the number of potential well minima, is set to 1 or 2. The resulting phonon spectra show that propagation of waves is always suppressed due to the confinement of particles by the applied 2D periodic substrates. For a commensurability ratio of 1, the spectra indicate that all particles mainly oscillate at one specific frequency, corresponding to the harmonic oscillation frequency of one single particle inside one potential well. At a commensurability ratio of 2, the substrate allows two particles to sit inside the bottom of each potential well, and the resulting longitudinal and transverse spectra exhibit four branches in total. We find that the two moderate branches come from the harmonic oscillations of one single particle and two combined particles in the potential well. The other two branches correspond to the relative motion of the two-body structure in each potential well in the radial and azimuthal directions. The difference in the spectra between the square and triangular substrates is attributed to the anisotropy of the substrates and the resulting alignment directions of the two-body structure in each potential well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call