Abstract

Photonics in the frequency range of 5-15terahertz (THz) potentially open a new realm of quantum materials manipulation and biosensing. This range, sometimes called "the new terahertz gap", is traditionally difficult to access due to prevalent phonon absorption bands in solids. Low-loss phonon-polariton materials may realize sub-wavelength, on-chip photonic devices, but typically operate in mid-infrared frequencies with narrow bandwidths and are difficult to manufacture on a large scale. Here, for the first time, quantum paraelectric SrTiO3 enables broadband surface phonon-polaritonic devices in 7-13THz. As a proof of concept, polarization-independent field concentrators are designed and fabricated to locally enhance intense, multicycle THz pulses by a factor of 6 and increase the spectral intensity by over 90 times. The time-resolved electric field inside the concentrators is experimentally measured by THz-field-induced second harmonic generation. Illuminated by a table-top light source, the average field reaches 0.5GVm-1 over a large volume resolvable by far-field optics. Theseresults potentially enable scalable THz photonics with high breakdown fields made of various commercially available phonon-polariton crystals for studying driven phases in quantum materials and nonlinear molecular spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.