Abstract

Metallic transition metal dichalcogenides, such as tantalum diselenide (TaSe2), display quantum correlated phenomena of superconductivity and charge density waves (CDW) at low temperatures. Here, the photophysics of 2H-TaSe2 during CDW transitions is revealed by combining temperature-dependent, low-frequency Raman spectroscopy and density functional theory (DFT). The spectra contain amplitude, phase, and zone-folded modes that are assigned to specific phonons and lattice restructuring predicted by DFT calculations with superb agreement. The non-invasive and efficient optical methodology detailed here demonstrates an essential link between atomic-scale and microscopic quantum phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.