Abstract

Close inspection of experimental results given by Perlin and co-workers [Phys. Status Solidi B 198, 223 (1996); Phys. Rev. B 45, 83 (1992)] shows that three phenomena were observed in that work: optical-phonon shift and splitting under pressures, which can be explained in a symmetry consideration for the $\ensuremath{\Gamma}$ point of hexagonal crystals; inhomogeneous broadening and shift of phonon frequencies due to strain fluctuations which are described in the present paper using Dyson's equation for the phonon Green's function; phonon hardening and decreasing of width in the metal-insulator transition in GaN under pressure of about 22 GPa. The last effect results from the interaction between electrons and optical phonons, but this interaction makes no impact on the line shape (Fano effect). We find that the phonon line shape in semiconductors with small carrier concentration is determined by strain fluctuations or imperfections. Estimates show that the electron-phonon interaction is the reason why optical phonons are not detected in typical metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.