Abstract

We study a single quantum dot molecule doped with one electron in the presence of electron-phonon coupling. Both diagonal and off-diagonal interactions representing real and virtual processes with acoustic phonons via deformation potential and piezoelectric coupling are taken into account. We employ a non-perturbative quantum kinetic theory and show that the phonon-mediated relaxation is dominated by an electron tunneling on a picosecond time scale. A dependence of the relaxation on the temperature and the strength of the tunneling coupling is analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.