Abstract

Interactions between mesoscopic devices induced by interface acoustic phonons propagating in the plane of a two-dimensional electron system (2DES) are investigated by phonon spectroscopy. In our experiments, ballistic electrons injected from a biased quantum point contact emit phonons and a portion of them are reabsorbed exciting electrons in a nearby degenerate 2DES. We perform energy spectroscopy on these excited electrons employing a tunable electrostatic barrier in an electrically separate and unbiased detector circuit. The transferred energy is found to be bounded by a maximum value corresponding to Fermi-level electrons excited and backscattered by absorbing interface phonons. Our results imply that phonon-mediated interaction plays an important role for the decoherence of solid-state-based quantum circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.