Abstract

Existence of sub-thermal collective excitations in proteins is of great interest due to its possible close coupling with the onset of their biological functions. We use high-energy resolution inelastic X-ray scattering to directly measure phonon dispersion relations and their damping in two hydrated proteins, α-chymotrypsinogen A and casein, differing in their secondary and tertiary structures. We observe that specific phonons in the Q range 28–30 nm−1 are markedly softened only above TD = 220 K, the observed protein dynamic transition temperature. This might indicate that only phonon modes within the wavelengths in the length scale comparable to the secondary structure dimension could be linked to the onset of protein biological activity. We also infer that the presence of tertiary structure contributes little to the population of phonons, while the α-helix seems to be the major contributor to phonons propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.