Abstract

The ordered adsorbate layer Sn/Si(111) ($\sqrt{3}\ifmmode\times\else\texttimes\fi{}\sqrt{3}$) with coverage of one third of a monolayer is considered as a realization of strong electronic correlation in surface physics. Our theoretical analysis shows that electron-hole pair excitations in this system can be long lived, up to several hundred nanoseconds, since the decay into surface phonons is found to be a highly nonlinear process. We combine first-principles calculations with help of a hybrid functional (HSE06) with modeling by a Mott-Hubbard Hamiltonian coupled to phononic degrees of freedom. The calculations show that the Sn/Si(111) ($\sqrt{3}\ifmmode\times\else\texttimes\fi{}\sqrt{3}$) surface is insulating and the two Sn-derived bands inside the substrate band gap can be described as the lower and upper Hubbard band in a Mott-Hubbard model with $U=0.75$ eV. Furthermore, phonon spectra are calculated with particular emphasis on the Sn-related surface phonon modes. The calculations demonstrate that the adequate treatment of electronic correlations leads to a stiffening of the wagging mode of neighboring Sn atoms; thus, we predict that the onset of electronic correlations at low temperature should be observable in the phonon spectrum, too. The deformation potential for electron-phonon coupling is calculated for selected vibrational modes and the decay rate of an electron-hole excitation into multiple phonons is estimated, substantiating the very long lifetime of these excitations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.