Abstract

We report on theoretical investigation of the thermal conductivity of AlxGa1−xN (0⩽x⩽1) films over a wide range of temperature by using both Debye's and Callaway's model. Our calculated results agree well with most of the available experimental results of films grown by Hidride Vapor Phase Epitaxy (HVPE) and Metal Oxide Chemical Vapor Deposition (MOCVD) techniques. We find that the large contribution of alloy mass disorder and point impurity scattering is the primary reason for the increase in thermal conductivity of AlxGa1−xN alloy film beyond room temperature. Above room temperature, MOCVD films have lower thermal conductivity compared to HVPE grown films due to the presence of a larger amount of defects in MOCVD films as compared to HVPE films. Variation of thermal resistivity with x in AlxGa1−xN shows a peak at x=0.7 due to the highest contribution of mass disorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.