Abstract

When time-reversal symmetry is broken, the low-energy description of acoustic lattice dynamics allows for a dissipationless component of the viscosity tensor, the phonon Hall viscosity, which captures how phonon chirality grows with the wave vector. In this work, we show that, in ionic crystals, a phonon Hall viscosity contribution is produced by the Lorentz forces on moving ions. We calculate typical values of the Lorentz force contribution to the Hall viscosity using a simple square lattice toy model, and we compare it with literature estimates of the strengths of other Hall-viscosity mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call