Abstract
Electronic transport in a model molecular device coupled to local phonon modes is theoretically analyzed. The method allows for obtaining an accurate approximation of the system's quantum state irrespective of the electron and phonon energy scales. Nonlinear electrical features emerge from the calculated current-voltage characteristics. The quantum corrections with respect to the adiabatic limit characterize the transport scenario, and the polaronic reduction of the effective device-lead coupling plays a fundamental role in the unusual electrical features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.