Abstract

The orthovanadates are useful as host matrices for immobilization of radioactive wastes. The thermodynamic stability of these materials is crucial for their applications in high pressure and temperatures environment. It is necessary to investigate the phonons in the entire Brillouin zone, beyond the zone-centre phonons accessible in previous Raman and infrared experiments. We have carried out extensive neutron inelastic scattering experiments to derive the phonon dispersion relation of YVO4 up to high energy transfer of 65 meV using a single crystal, which are perhaps reported for the first time in any orthovanadate compound. The measured phonon dispersion relation is in good agreement with our first principles density functional theory as well as shell model calculations. The calculated pressure dependence of phonon modes in the zircon and scheelite phases shows unstable modes and violation of the Born stability criteria at high pressure, which may be lead to instability in YVO4 at high pressures. We also calculate large anisotropy in the thermal expansion behavior which arises from difference in anisotropic elasticity and mode Gr\"uneisen parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.